Modeling Latent Variable Uncertainty for Loss-based Learning

نویسندگان

  • M. Pawan Kumar
  • Benjamin Packer
  • Daphne Koller
چکیده

We consider the problem of parameter estimation using weakly supervised datasets, where a training sample consists of the input and a partially specified annotation, which we refer to as the output. The missing information in the annotation is modeled using latent variables. Previous methods overburden a single distribution with two separate tasks: (i) modeling the uncertainty in the latent variables during training; and (ii) making accurate predictions for the output and the latent variables during testing. We propose a novel framework that separates the demands of the two tasks using two distributions: (i) a conditional distribution to model the uncertainty of the latent variables for a given input-output pair; and (ii) a delta distribution to predict the output and the latent variables for a given input. During learning, we encourage agreement between the two distributions by minimizing a loss-based dissimilarity coefficient. Our approach generalizes latent svm in two important ways: (i) it models the uncertainty over latent variables instead of relying on a pointwise estimate; and (ii) it allows the use of loss functions that depend on latent variables, which greatly increases its applicability. We demonstrate the efficacy of our approach on two challenging problems—object detection and action detection—using publicly available datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Latent Variable Uncertainty for Loss - based Learning

We consider the problem of parameter estimation using weakly supervised datasets, where a training sample consists of the input and a partially specified annotation, which we refer to as the output. The missing information in the annotation is modeled using latent variables. Traditional methods, such as expectation-maximization, overburden a single distribution with two separate tasks: (i) mode...

متن کامل

Weakly Supervised Learning for Structured Output Prediction

We consider the problem of learning the parameters of a structured output prediction model, that is, learning to predict elements of a complex interdependent output space that correspond to a given input. Unlike many of the existing approaches, we focus on the weakly supervised setting, where most (or all) of the training samples have only been partially annotated. Given such a weakly supervise...

متن کامل

Auxiliary Guided Autoregressive Variational Autoencoders

Generative modeling of high-dimensional data is a key problem in machine learning. Successful approaches include latent variable models and autoregressive models. The complementary strengths of these approaches, to model global and local image statistics respectively, suggest hybrid models combining the strengths of both models. Our contribution is to train such hybrid models using an auxiliary...

متن کامل

Recurrent Ladder Networks

We propose a recurrent extension of the Ladder networks [22] whose structure is motivated by the inference required in hierarchical latent variable models. We demonstrate that the recurrent Ladder is able to handle a wide variety of complex learning tasks that benefit from iterative inference and temporal modeling. The architecture shows close-to-optimal results on temporal modeling of video da...

متن کامل

Accounting for the “Known Unknowns”: Incorporating Uncertainty in Second-Stage Estimation

Recent political science research has seen a surge in interest in estimating latent variables (including ideal points of legislators and judges, political sophistication, and democratization) using item-response theory modeling and other factor-analytic techniques. These models offer several advantages over summated scales and other techniques, but one of these advantages—having an estimate of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1206.4636  شماره 

صفحات  -

تاریخ انتشار 2012